Computer-aided design (CAD)

No data was found

Computer-aided design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question.

CAD is one part of the whole digital product development (DPD) activity within the product lifecycle management (PLM) processes, and as such is used together with other tools, which are either integrated modules or stand-alone products, such as:

  • Computer-aided engineering (CAE) and finite element analysis (FEA, FEM)
  • Computer-aided manufacturing (CAM) including instructions to computer numerical control (CNC) machines
  • Photorealistic rendering and motion simulation.
  • Document management and revision control using product data management (PDM)

Types of CAD

There are several different types of CAD, each requiring the operator to think differently about how to use them and design their virtual components in a different manner for each.

There are many producers of the lower-end 2D systems, including a number of free and open-source programs. These provide an approach to the drawing process without all the fuss over scale and placement on the drawing sheet that accompanied hand drafting since these can be adjusted as required during the creation of the final draft.

3D wireframe is basically an extension of 2D drafting (not often used today). Each line has to be manually inserted into the drawing. The final product has no mass properties associated with it and cannot have features directly added to it, such as holes. The operator approaches these in a similar fashion to the 2D systems, although many 3D systems allow using the wireframe model to make the final engineering drawing views.

3D solids are created in a way analogous to manipulations of real-world objects (not often used today). Basic three-dimensional geometric forms (prisms, cylinders, spheres, and so on) have solid volumes added or subtracted from them as if assembling or cutting real-world objects. Two-dimensional projected views can easily be generated from the models. Basic 3D solids don’t usually include tools to easily allow motion of components, set limits to their motion, or identify interference between components.

There are two types of 3D solid modeling

Parametric modeling allows the operator to use what is referred to as “design intent”. The objects and features created are modifiable. Any future modifications can be made by changing how the original part was created. If a feature was intended to be located from the center of the part, the operator should locate it from the center of the model. The feature could be located using any geometric object already available in the part, but this random placement would defeat the design intent. If the operator designs the part as it functions the parametric modeler is able to make changes to the part while maintaining geometric and functional relationships.

Direct or explicit modeling provide the ability to edit geometry without a history tree. With direct modeling, once a sketch is used to create geometry the sketch is incorporated into the new geometry and the designer just modifies the geometry without needing the original sketch. As with parametric modeling, direct modeling has the ability to include relationships between selected geometry (e.g., tangency, concentricity).

Share this content

Share on linkedin
Share on facebook
Share on pinterest
Share on whatsapp
Share on email

Tools & Equipments

No data was found

Other Areas

Contact us

We’re here to help!

Having questions or want to discuss your ideas?

Contact us to learn more about these content and how we can assist in the footwear digitalizing.

We use cookies to provide you with a better service and for promotional purposes.
By continuing to use this site you consent to our use of cookies as described in our cookie policy.